Monatshefte für Chemie 136, 193–209 (2005) DOI 10.1007/s00706-004-0231-5

Monatshefte für Chemie Chemical Monthly Printed in Austria

Protoberberines from *Reissert*-Compounds. Part IX [1]. An Alternative Approach to Dibenzoquinolizine- and Isoquinonaphthyridin-13a-carboxylic Acids, a Novel Synthesis of Alangimarine[#]

Eberhard Reimann* and Fritz Grasberger^a

Department Pharmazie – Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, D-81377 München, Germany

Received May 13, 2004; accepted May 28, 2004 Published online September 24, 2004 © Springer-Verlag 2004

Summary. 3,4-Dihydroisoquinoline-*Reissert*-compounds were alkylated to 1-benzyl- and 1-picolylderivatives, which in turn could selectively be hydrolized yielding various carboxylic acids, among others certain amino acids related to 3',4'-deoxynorlaudanosoline carboxylic acid (*DNLCA*). These on treating with ethanolic KOH underwent cyclization to dibenzoquinolizine- and isoquinonaphthyridine-13a-carboxylic acids. Alternatively this cyclization also could be achieved by a more convenient onepot procedure starting from the same dihydro-*Reissert*-compounds. Thermal decarboxylation afforded among others the alangia alkaloids alangimarine and dihydroalangimarine.

Keywords. Alkaloids; Carboxylic acids; Cyclizations; Total synthesis.

Introduction

Starting from isoquinoline-*Reissert*-compounds we have previously synthesized partially hydrogenated dibenzoquinolizine-13a-carboxylic acids, which in turn were found to be very valuable precursors for the preparation of naturally occurring protoberberines [1, 2]. However, the application of this strategy to the synthesis of the corresponding 10-aza-analogues, the isoquinonaphthyridines, which represent the framework of the pharmacologically active alangia alkaloids, *e.g.* **24c** has failed. The expected intermediate oxazoloisoquinoline derivative indicating that

[#] Dedicated to Prof. C. Herdeis, Würzburg, on the occasion of his 60th birthday

^{*} Corresponding author. E-mail: ebrei@cup.uni-muenchen.de

^a Part of PhD thesis, LMU München, D

the intended reduction of the *Reissert* educt had occured, was not observed [3]. Furthermore, it has been also found, that, in contrast to dibenzoquinolizinones [4], the fully aromatic isoquinonaphthyridinone could not be reduced with complex hydrides to afford the hydrogenation pattern of the alangia alkaloids **24c** or **24b** [5].

Therefore we envisaged that the reduction step required in our strategy should be avoided, if 3,4-dihydro-*Reissert*-compounds of type **7** would be employed as starting material. These are generally available from 3,4-dihydroisoquinolines **5** by the known standard procedures [6] and their alkylation at the C-1 position proceeds as readily as that of the classical *Reissert*-compounds [7, 8].

Results and Discussion

The 3,4-dihydroisoquinolines **5** were prepared by known but improved procedures according to Scheme 1 starting from 1,2,3,4-tetrahydroisoquinoline **2** or from the phenethylamines **3** via the formamides **4**. They could be reacted with benzoyl chloride and NaCN in the presence of NaHCO₃ [6] affording the expected dihydro-*Reissert*-compounds **7** in excellent yields. The formation of **6** as a possible side product reported [6] was detected in very small amounts only in the case of **7c** (see Scheme 2).

The sequential alkylation with the halogenides 8 and 9, prepared according to Scheme 3, occured readily yielding the 1-benyzl- and 1-picolyl-dihydro-*Reissert* derivatives 10 and 11. The reaction definitely stopped at this step. A further reaction leading to the tetracyclic isoquinonaphthyridinone previously reported [5], when classical *Reissert* compounds were employed as the educt, was not observed. In contrast, 10 and 11 were markedly more stable towards hydrolysis. An explanation may be that the complete aromatization cannot be achieved in the tetracyclic target compounds of the type 21 and 22 (see Scheme 6).

This gave rise to a more systematic investigation to elaborate suitable cyclization conditions using **11a** as educt. Thus it was hydrolyzed by ethanolic KOH to give **16**. On the other hand, more forced reaction conditions, *e.g.* KOH in monoethylene glycol, additionally caused elimination of HCN affording **17**. In contrast, dilute sulfuric acid selectively converted the angular nitrile group to the corresponding carboxylic acid **18**, and finally with concentrated phosphoric acid the

amino acids **19** and **20** were obtained from the educts **10** and **11a** under retention of the aromatic ester function (see Schemes 4 and 5). These new amino acids, being poorly soluble in the usual solvents, may be of biological interest due to their structural relationship to 3',4'-deoxynorlaudanosoline carboxylic acid (*DNLCA*, **19**: $\mathbb{R}^1 = \mathbb{R}^2 = OH$, H instead of CO₂Et), which in turn is known to inhibit several enzymes, *e.g.* dihydropteridine reductase, tyrosine 3-monooxygenase, and dopa-min- β -hydroxylase [9–11].

Concerning our present investigations the amino acids 19 and 20 obtained turned out to be suitable precursors for the intended cyclizations. Thus treatment of 19 with ethanolic potassium hydroxid solution afforded the oxoberbine-13a-carboxylic acid 21 in excellent yields, being identical with that prepared previously on an independent route (see Scheme 5) [1, 2].

The readily occurring cyclization of the amino acid **19** as well as its unequivocal formation in phosphoric acid prompted us to combine the two steps in an one-pot

Scheme 4

procedure. Thus in a model reaction the 1-alkylated dihydro-*Reissert*-compound **10** first was treated with phosphoric acid and then – without isolating **19** – was reacted with KOH. Indeed the berbinone carboxylic acid **21** was formed in 87% total yield meaning a 14% increase in comparison to the single steps (see Scheme 6).

In the same manner the 3,4-dihydro-*Reissert*-compounds 11a, 11c, and 11d could be cyclized to the azalogue carboxylic acids 22a, 22b, and 22c, whereby in the case of 11c and 11d the benzylic ether group was also cleaved to provide the corresponding phenols. Finally 21 and 22 underwent thermal decarboxylation

giving the alkaloids alangimarine (24c) and dihydroalangimarine (24b), whereas from the educt 21 the 13,13a-dihydro-product, berbin-8-one (25), was preferentially generated besides the corresponding *de*hydroderivative 23 [1, 2].

In conclusion, a novel route to partially hydrogenated 8-oxodibenzochinolizine-13a-carboxylic acids and the corresponding 10-aza analogues was designed starting from 1-substituted dihydro-*Reissert*-compounds. This method provides a convenient approach to the pharmacological attractive protoberberine- and alangiaalkaloids from easily accessible starting materials. Furthermore, certain intermediate amino acids related to 3',4'-deoxynorlaudanosoline carboxylic acid, which is known as an enzyme inhibitor, are also available by this route. Further investigations concerning its applicability to natural product and drug synthesis are in progress in our laboratory.

Experimental

Melting points were measured with a *Reichert* hot-stage microscope. IR: Perkin Elmer FT-IR Paragon 1000 and Jasco FT-IR 410. UV/Vis: Jasco V-530. NMR: Jeol GSX 400 and Jeol GSX 500 (¹H: 400 and 500 MHz, ¹³C: 100 and 125 MHz, CDCl₃, *TMS* as internal reference); MS (70 eV): Hewlett Packard MS-Engine. Elemental analyses: Heraeus CHN-Rapid and Elementar Vario EL; the results are in good agreement with the calculated values. Thin layer chromatography (TLC): Al sheets Kieselgel 60 F_{254} (Merck) and Al sheets Aluminiumoxid F_{254} (Fluka), each thickness of layer 0.2 mm. Preparative Layer Chromatography (FC): ICN-Sili Tech 32-63, 60 A and Aluminumoxid Typ 507 C neutral 0.05–0.15 mm. Strongly basic ion-exchange resin: Amberlite IRA-400 (CI). **2** and **3a** are commercial products. **1**, **4a**, **8**, **9a**, and **12a** were prepared according to Refs. [12], [13], [2, 14], [15], and [16].

2-(4-Benzyloxy-3-methoxyphenyl)ethylamine (3b)

To a suspension of 19.0 g of LiAlH₄ (0.5 mol) in 500 cm³ of dry Et_2O 25.8 g of 4-(benzyloxy)-3methoxy- β -nitrostyrene (0.1 mol) (1) were added under stirring and refluxing by continuous extraction in a *Soxhlet* apparatus for 30 h. Then to the mixture 10 cm^3 of H_2O , 20 cm^3 of 20% NaOH solution, and 37 cm^3 of H_2O were consecutively added under vigorous stirring, ice cooling, and N_2 . After stirring for further 30 min, the mixture was filtered over kieselguhr. The organic layer was separated and the H_2O phase extracted with $3 \times 200 \text{ cm}^3$ of Et_2O . The combined organic extracts were dried (Na₂SO₄) and the solvent was removed *in vacuo*. The remaining product was used without further purification. Yield: 20.6 g (80%) colourless oil, which solidified on storing in the refrigerator; mp 58°C (Ref. [17]: 60-62°C); TLC (CHCl₃:*Me*OH:25% NH₃ = 9:1:0.1): R_f = 0.35; ¹H NMR (400 MHz): δ = 7.47–7.25 (m, 5 arom H), 6.81 (d, *J* = 8.3 Hz, 5-H), 6.74 (d, *J* = 1.6 Hz, 2-H), 6.67 (dd, *J* = 1.6/8.3 Hz, 6-H), 5.12 (s, aryl–CH₂O), 3.87 (s, CH₃O), 2.92 (t, *J* = 6.8 Hz, CH₂–N), 2.67 (t, *J* = 6.8 Hz, aryl–CH₂), 1.36 (s, NH₂) ppm.

N-[2-(4-Benzyloxy-3-methoxyphenyl)ethyl]formamide (4b)

A mixture of 20.0 g of **3b** (78 mmol) and 46.9 g of HCOOCH₃ (780 mmol) freshly distilled before use was stirred for 12 h at ambient temperature. After removing the volatile components *in vacuo*, a colourless, viscous oil remained, which was used for the next step without further purification. Yield: 22.3 g (100%) [18]; TLC (*n*-hexane:*EtOAc* = 3:1): R_f = 0.68; IR (film): $\bar{\nu}$ = 1665 (C=O) cm⁻¹; MS (CI): m/z (%) = 286 (M^{+•} + 1, 100); ¹H NMR (400 MHz): δ = 8.02 (d, J = 1.2 Hz, N–CHO), 7.45–7.25 (m, 5 arom H), 6.80 (d, J = 8.2 Hz, 5-H), 6.72 (d, J = 1.9 Hz, 2-H), 6.64 (dd, J = 8.2, 2.0 Hz, 6-H), 6.06 (br s, NH), 5.09 (s, aryl–CH₂O), 3.83 (s, CH₃O), 3.46 (dd, J = 13.3, 7.0 Hz, CH₂–N), 2.72 (t, J = 7.0 Hz, aryl–CH₂) ppm; ¹³C NMR (100 MHz): δ = 161.18, 149.92, 147.02, 137.25, 131.77, 128.53, 128.50, 127.85, 127.32, 127.14, 120.71, 114.54, 112.62, 71.26, 56.06, 39.24, 35.13 ppm.

3,4-Dihydroisoquinoline (**5a**) According to the General Procedure for the Dehydrogenation of Benzylamines [19]

To a solution of 6.65 g of **2** (50 mmol) in 250 cm³ of CH₂Cl₂ 16.2 g of HgO and 19.1 g of I₂ (each 75 mmol) were added and the mixture was stirred for 1 h at ambient temperature. The solid was removed by a glass frit P4 and washed with $3 \times 20 \text{ cm}^3$ of CH₂Cl₂. The combined filtrates were consecutively washed with 500 cm^3 of 5% Na₂S₂O₃ solution and 500 cm³ of H₂O and dried (Na₂SO₄). After evaporating the solvent *in vacuo* the remaining product was used without further purification. An analytical sample was obtained by FC (CHCl₃:*Me*OH = 9:1). Yield: 6.4 g (98%) colourless oil; TLC (CHCl₃:*Me*OH:25% NH₃ = 9:1:0.1): $R_f = 0.52$; the ¹H NMR spectrum was in line with that reported in Ref. [20].

General Procedure for the Synthesis of 3,4-Dihydroisoquinolines **5b** and **5c** by Bischler-Napieralski Cyclization

A mixture of the formamide **4**, toluene, and freshly destilled POCl₃ was heated for 1 h at 85°C (temperature of the oil bath) and then reacted for additional 4 h at ambient temperature. After removing the excess POCl₃ *in vacuo*, the mixture was rendered alkaline with 2*N* NaOH under ice cooling and vigorous stirring and then was extracted with $3 \times 50 \text{ cm}^3$ of CHCl₃. The combined organic extracts were dried (Na₂SO₄) and evaporated *in vacuo*. The residue was purified by FC (CHCl₃:*Me*OH:25% NH₃ = 9:1:0.1).

6,7-Dimethoxy-3,4-dihydroisoquinoline (5b)

From 5.0 g **4a** (19 mmol), 150 cm³ toluene, 15 cm³ POCl₃. Yield: 3.56 g (76%) pale yellow oil [13]; TLC (eluent see FC): $R_{\rm f} = 0.43$; ¹H NMR (400 MHz): $\delta = 8.23$ (t, J = 2.1 Hz, 1-H), 6.81 and 6.67 (2s, 8-H and 5-H), 3.91 and 3.90 (2s, 2OCH₃), 3.76–3.70 and 2.72–2.63 (2m, 3-H_{ab} and 4-H_{ab}) ppm.

Protoberberines from Reissert-Compounds

7-Benzyloxy-6-methoxy-3,4-dihydroisoquinoline (5c)

From 4.0 g **4b** (14 mmol), 150 cm³ toluene, 10 cm³ POCl₃. Yield: 3.21 g (86%) colourless oil, which solidified on storing in the refrigerator; mp 92°C, recrystallization of an analytical sample from *n*-hexane: mp 99–100°C (Ref. [21]: 101–101.5°C); TLC (CHCl₃:*Me*OH:25% NH₃ = 19:1:0.1): $R_{\rm f}$ = 0.49; MS (EI): m/z (%) = 267 (M^{+•}, 22), 176 (17), 91 (100); ¹H NMR (400 MHz): δ = 8.15 (t, J = 2.2 Hz, 1-H), 7.47–7.23 (m, 5 arom H), 6.83 and 6.68 (2s, 8-H and 5-H), 5.14 (s, aryl–OCH₂), 3.91 (s, OCH₃), 3.71 (dt, J = 8.0, 2.1 Hz, 3-H_{ab}), 2.67 (t, J = 8.0 Hz, 4-H_{ab}) ppm; ¹³C NMR (100 MHz): δ = 159.71, 152.17, 146.92, 136.80, 130.55, 128.61, 128.59, 127.99, 127.31, 127.01, 121.33, 113.42, 110.83, 71.34, 56.10, 47.11, 24.82 ppm.

General Procedure for the Synthesis of 3,4-Dihydroisoquinoline-Reissert-Compounds 7

A solution of NaCN, adjusted to *pH* 8, was added to a mixture of **5**, NaHCO₃, and CH₂Cl₂ under ice cooling. Thereafter a solution of benzoyl chloride in CH₂Cl₂ was added dropwise during 30 min under vigorous stirring and further cooling. After stirring for additional 1.5 h at ambient temperature the mixture was diluted with 20 cm³ of H₂O and extracted with 3×25 cm³ of CH₂Cl₂. The combined organic extracts were consecutively washed with 20 cm³ of 2*N* HCl, 20 cm³ of 2*N* NaOH, and 2×20 cm³ of H₂O, dried (Na₂SO₄), and filtered. After removing the solvent *in vacuo*, the residue was crystallized from 50 cm³ of *Me*OH. The solid was collected by filtration and dried *in vacuo* at ambient temperature.

2-Benzoyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (7a)

From 6.0 g **5a** (46 mmol), 150 cm³ CH₂Cl₂, 13.3 g NaHCO₃ (158 mmol), 4.4 g NaCN (92 mmol)/20 cm³ H₂O, 6.5 g C₆H₅COCl (69 mmol)/15 cm³ CH₂Cl₂. Yield: 8.6 g (71%) colourless crystals; mp 113°C (Ref. [6]: 113–115°C); TLC (*n*-hexane:*EtOAc* = 1:1): $R_{\rm f}$ = 0.45; IR (KBr): $\bar{\nu}$ = 2238 (CN), 1643 (C=O) cm⁻¹; MS (EI): m/z (%) = 262 (M^{+•}, 57), 105 (100), 77 (65); ¹H NMR (400 MHz): δ = 7.59–7.20 (m, 9 arom H), 6.46 (br s, 1-H), 4.23–3.90 and 3.72–3.36 (2 br s, 3-H_a and 3-H_b), 3.22–2.96 and 2.95–2.75 (2 m, 4-H_a and 4-H_b) ppm; ¹³C NMR (100 MHz): δ = 170.99, 133.90, 130.90, 129.55, 129.00, 128.81, 128.07, 127.48, 127.13 (5C), 117.78, 44.51, 43.29, 28.57 ppm.

2-Benzoyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (7b)

From 3.5 g **5b** (18 mmol), 100 cm³ CH₂Cl₂, 5.3 g NaHCO₃ (63 mmol), 1.7 g NaCN (36 mmol)/10 cm³ H₂O, 2.5 g C₆H₅COCl (27 mmol)/10 cm³ CH₂Cl₂. Yield: 4.9 g (85%) colourless crystals; mp 205°C (Ref. [6]: 211–213°C); TLC (*n*-hexane:*EtOAc* = 1:1): $R_{\rm f}$ = 0.36; IR (KBr): $\bar{\nu}$ = 2230 (C=N), 1628 (C=O) cm⁻¹; MS (EI): m/z (%) = 322 (M^{+•}, 100), 307 (24), 105 (76), 77 (68); ¹H NMR (400 MHz): δ = 7.57–7.43 (m, 5 arom H), 6.83 (br s, 8-H), 6.66 (s, 5-H), 6.42 (br s, 1-H), 4.12–3.95 (br s, 3-H_a), 3.88 (s, 20CH₃), 3.56 (br s, 3-H_b), 3.09–2.92 (m, 4-H_a), 2.74 (d, *J* = 15.6 Hz, 4-H_b) ppm; ¹³C NMR (100 MHz): δ = 171.51, 149.69, 148.71, 134.11, 130.97, 128.92 (2C), 127.27 (3C), 119.75, 118.03, 111.67, 109.50, 56.23, 56.11, 44.36, 43.45, 28.18 ppm.

2-Benzoyl-7-benzyloxy-6-methoxy-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (7c)

From 3.0 g **5c** (11 mmol), 80 cm³ CH₂Cl₂, 3.2 g NaHCO₃ (38 mmol), 1.0 g NaCN (22 mmol)/8 cm³ H₂O, 1.5 g C₆H₅COCl (17 mmol)/8 cm³ CH₂Cl₂. Yield: 4.0 g (91%); mp 180°C (Ref. [22]: 178–180°C); TLC (*n*-hexane:*EtOAc* = 1:1): $R_{\rm f}$ = 0.43; IR (KBr): $\bar{\nu}$ = 2233 w (C≡N), 1642 (C=O) cm⁻¹; MS (EI): m/z (%) = 398 (M^{+•}, 54), 105 (100), 91 (96); ¹H NMR (400 MHz): δ = 7.54–7.28 (m, 10 arom H), 6.85 (br s, 8-H), 6.67 (s, 5-H), 6.32 (br s, 1-H), 5.24–4.99 (m, OCH₂), 4.08–3.91 (br s,

3-H_a), 3.87 (s, OCH₃), 3.62–3.38 (br s, 3-H_b), 3.07–2.90 (m, 4-H_a), 2.73 (d, J = 15.7 Hz, 4-H_b) ppm; ¹³C NMR (100 MHz): $\delta = 170.81$, 150.55, 147.89, 136.53, 134.20, 130.82, 128.83 (2C), 128.66 (2C), 128.13, 127.48 (3C), 127.18 (3C), 119.82, 117.82, 112.57, 112.42, 71.50, 56.19, 44.18, 28.11 ppm.

N-[2-(4-Benzyloxy-2-formyl-5-methoxyphenyl)ethyl]benzamide (6, C₂₄H₂₃NO₄)

Separation by FC (CHCl₃:*Me*OH = 95:5) from the crude product **7c** (see above). Yield: 86 mg (2%) colourless solid, mp 124°C; TLC (eluent see FC): $R_f = 0.43$; ¹H NMR (400 MHz): $\delta = 10.01$ (s, CHO), 7.74–7.68 (m, 2 arom H), 7.50–7.26 (m, 9 arom H), 6.81 (s, 1 arom H), 6.74–6.68 (like a t, NH), 5.16 (s, OCH₂), 3.89 (s, OCH₃), 3.71 (dd, J = 12.7, 7.0 Hz, N–CH₂), 3.31 (t, J = 7.0, aryl–CH₂) ppm.

5-Ethyl-4-methylnicotinonitrile (12b)

Preparation according to Ref. [23]. Yield: 11.3 g (86%) colourless oil; bp $118-122^{\circ}C/9.0 \times 10^2$ Pa (Ref. [23]: $120^{\circ}C/9.3 \times 10^2$ Pa); TLC (*n*-hexane:*EtOAc* = 3:1): $R_f = 0.56$; IR (film): $\bar{\nu} = 2227$ (C \equiv N) cm⁻¹; MS (CI): m/z (%) = 147 (M^{+•} + 1, 100); ¹H NMR (400 MHz): $\delta = 8.55$ and 8.43 (2s, 2-H and 6-H), 2.65 (q, J = 7.7 Hz, CH₂), 2.46 (s, ar-CH₃), 1.18 (t, J = 7.7 Hz, CH₃) ppm; ¹³C NMR (100 MHz): $\delta = 152.37$, 150.66, 148.56, 138.38, 116.54, 111.06, 23.98, 17.11, 14.09 ppm.

4-Methyl-5-vinyl-nicotinonitrile (12c)

Preparation according to Ref. [24]. Yield: 6.6 g (52%) colourless oil; bp $96^{\circ}C/2.7 \times 10^{2}$ Pa (Ref. [23]: $98^{\circ}C/2.7 \times 10^{2}$ Pa) which solidified on storing in the refrigerator; TLC (*n*-hexane:*EtOAc* = 3:1): $R_{\rm f}$ = 0.34; IR (film): $\bar{\nu}$ = 2229 (C=N) cm⁻¹; MS (EI): m/z (%) = 144 (M^{+•}, 22), 117 (26), 94 (100), 86 (53), 84 (72); ¹H NMR (400 MHz): δ = 8.75 and 8.69 (2s, 6-H and 2-H), 6.84 (dd, J = 11.2, 17.6 Hz, ar-CH), 5.78 and 5.57 (2d, J = 17.6 and 11.2 Hz, C=CH₂), 2.56 (s, CH₃) ppm; ¹³C NMR (100 MHz): δ = 150.48, 149.02, 146.34, 132.62, 129.37, 119.25, 115.14, 110.05, 16.51 ppm.

General Procedure for the Preparation of Nicotinamides 13b and 13c

The ion-exchange resin was stored in 100 cm^3 of H₂O for 15 h, then transferred to a chromatography column and washed with *ca*. 1000 cm^3 of 6*N* NaOH, until no more Cl⁻ could be detected in the eluate. The resin was filtered off and washed with $2 \times 100 \text{ cm}^3$ of H₂O. A suspension of the resin thus prepared and the nitrile **12** in H₂O was refluxed for 16 h. The resin was filtered off from the hot mixture and washed with $2 \times 50 \text{ cm}^3$ of hot H₂O. The combined filtrates were evaporated *in vacuo* affording the solid product, which was used for the next step without further purification. An analytical sample was recrystallized from *Et*OH.

5-Ethyl-4-methylnicotinamide (13b, C₉H₁₂N₂O)

Ion-exchange resin 16.5 g, 11.1 g **12b** (76 mmol), 150 cm³ H₂O; yield: 11.6 g (93%) colourless crystals; mp 154°C; TLC (CHCl₃:*Me*OH=9:1): $R_{\rm f}$ =0.18; IR (KBr): $\bar{\nu}$ =1665 (C=O) cm⁻¹; MS (EI): m/z (%) = 164 (M^{+•}, 100), 148 (43), 147 (24), 120 (60); ¹H NMR (CD₃OD, 400 MHz): δ = 8.45 and and 8.34 (2s, 2-H and 6-H), 4.95 (br s, NH₂), 2.75 (q, *J*=7.6 Hz, ar-CH₂), 2.43 (s, ar-CH₃), 1.24 (t, *J*=7.6 Hz, CH₃) ppm; ¹³C NMR (CD₃OD, 100 MHz): δ = 172.83, 150.44, 145.64, 145.16, 140.51, 134.78, 24.60, 15.52, 14.65 ppm.

4-Methyl-5-vinylnicotinamide (13c, C₉H₁₀N₂O)

Ion-exchange resin 8.5 g, 6.5 g **12c** (45 mmol), 100 cm³ H₂O; yield: 6.5 g (89%) colourless crystals; mp 143°C; TLC (CHCl₃:*Me*OH = 9:1): $R_f = 0.19$; IR (KBr): $\bar{\nu} = 1667$ (C=O) cm⁻¹; MS (EI):

m/z (%) = 162 (M^{+•}, 92), 144 (45), 118 (100), 91 (84), 65 (48); ¹H NMR (CD₃OD, 400 MHz): $\delta = 8.55$ and 8.41 (2s, 6-H and 2-H), 6.95 (dd, J = 17.5, 11.0 Hz, ar-CH=), 5.75 and 5.51 (2d, J = 17.5 and 11.0 Hz, CH₂=), 5.37–4.84 (br s, NH₂), 2.42 (s, CH₃) ppm; ¹³C NMR (CD₃OD, 100 MHz): $\delta = 170.38$, 147.30, 145.12, 143.12, 134.28, 132.18, 131.14, 118.87, 15.55 ppm.

General Procedure for the Synthesis of Nicotinic Acid Ethyl Ester 14b and 14c

A solution of the amide **13** in anhydrous *Et*OH was heated under reflux. Simultaneously a weak stream of dry HCl was passed into the mixture until no more NH₄Cl precipitated (*ca.* 5h). Refluxing was continued for further 31 h. After evaporating the solvent *in vacuo*, the residue was triturated with 200 cm³ of H₂O. The solution was rendered neutral with solid Na₂CO₃ and extracted with 3×100 cm³ of *Et*₂O. The combined organic extracts were dried (Na₂SO₄) and evaporated *in vacuo*. The remaining product was used for the next step without further purification. An analytical sample was obtained by FC (*n*-hexane:*Et*OA*c* = 3:1).

5-Ethyl-4-methylnicotinic Acid Ethyl Ester (14b)

From 11.5 g **13b** (70 mmol), 700 cm³ *Et*OH. Yield: 12.6 g (93%) colourless liquid (Ref. [25]); TLC (*n*-hexane:*Et*OAc = 3:1): $R_{\rm f}$ = 0.72; IR (film): $\bar{\nu}$ = 1721 (C=O) cm⁻¹; MS (EI): m/z (%) = 193 (M^{+•}, 16), 165 (100), 150 (94), 120 (57); ¹H NMR (400 MHz): δ = 8.84 and 8.45 (2s, 2-H and 6-H), 4.39 (q, J = 7.1 Hz, OCH₂), 2.71 (q, J = 7.5 Hz, ar-CH₂), 2.54 (s, ar-CH₃), 1.41 (t, J = 7.1 Hz, OC-CH₃), 1.23 (t, J = 7.5 Hz, C-CH₃) ppm; ¹³C NMR (100 MHz): δ = 166.92, 151.90, 148.99, 146.31, 138.42, 126.89, 61.30, 24.03, 15.65, 14.51, 14.29 ppm.

4-Methyl-5-vinylnicotinic Acid Ethyl Ester (14c, C₁₁H₁₃NO₂)

From 6.5 g **13c** (40 mmol), 500 cm³ *Et*OH. Yield: 6.7 g (88%) colourless liquid; TLC (*n*-hexane: *EtOAc* = 3:1): $R_{\rm f}$ = 0.84; IR (film): $\bar{\nu}$ = 1721 (C=O) cm⁻¹; MS (CI): m/z (%) = 192 (M^{+•} + 1, 34); ¹H NMR (400 MHz): δ = 8.86 and 8.63 (2s, 2-H and 6-H), 6.88 (dd, J = 17.4, 11.1 Hz, ar-CH=), 5.64 and 5.44 (2d, J = 17.4 and 11.1 Hz, CH₂=), 4.36 (q, J = 7.2 Hz, OCH₂), 2.52 (s, ar-CH₃), 1.37 (t, J = 7.2 Hz, OC-CH₃) ppm; ¹³C NMR (100 MHz): δ = 166.61, 150.03, 149.71, 145.49, 134.38, 131.92, 126.68, 119.03, 61.32, 16.32, 14.26 ppm.

General Procedure for the Synthesis of the N-Oxides 15b and 15c

A mixture of **14**, glacial acetic acid, and 30% H_2O_2 was heated for 3 h at 80°C (bath temperature) and, after addition of further 30% H_2O_2 , for additional 12 h at 75°C. The solution was concentrated *in vacuo* to one half of its volume, then 20 cm³ of H_2O were added and the remaining acetic acid was evaporated *in vacuo*. After triturating with 50 cm³ of CHCl₃ the residue was neutralized with 30 cm³ of a saturated NaHCO₃ solution. The CHCl₃ layer was separated and the aqueous phase was extracted with $6 \times 20 \text{ cm}^3$ of CHCl₃ (TLC monitoring). After drying the combined organic extracts (Na₂SO₄) the solvent was removed *in vacuo*. The product was used for the next step without further purification. An analytical sample was obtained by FC (CHCl₃:*Me*OH = 9:1).

5-Ethyl-4-methyl-1-oxynicotinic Acid Ethyl Ester (15b, C₁₁H₁₅NO₃)

From 11.5 g **14b** (60 mmol), 50 cm³ CH₃CO₂H, 5.0 + 2.5 cm³ 30% H₂O₂. Yield: 9.8 g (78%) pale yellow oil; TLC (eluent see FC): $R_{\rm f} = 0.36$; IR (film): $\bar{\nu} = 1727$ (C=O), 1306 (NO) cm⁻¹; MS (EI): m/z (%) = 209 (M^{+•}, 15), 193 (92), 148 (100), 120 (82); ¹H NMR (CD₃OD, 400 MHz): $\delta = 8.52$ and 8.27 (2s, 2-H and 6-H); 4.41 (q, J = 7.1 Hz, OCH₂), 2.78 (q, J = 7.6 Hz, ar-CH₂), 2.55 (s, ar-CH₃),

1.40 (t, J = 7.1 Hz, OC–CH₃), 1.26 (t, J = 7.6 Hz, C–CH₃) ppm; ¹³C NMR (CD₃OD, 100 MHz): $\delta = 165.17, 144.83, 142.33, 140.87, 138.44, 131.40, 63.30, 24.88, 15.53, 14.37, 13.86 ppm.$

4-Methyl-1-oxy-5-vinylnicotinic Acid Ethyl Ester (15c, C₁₁H₁₃NO₃)

From 6.6 g **14c** (35 mmol), 25 cm³ CH₃CO₂H, 2.5 + 1.25 cm³ 30% H₂O₂. The crude product was purified by FC (CHCl₃:*Me*OH = 9:1). Yield: 4.0 g (56%) pale yellow oil, which should be stored in the refrigerator under N₂ or immediately used in the next step. TLC (eluent see FC): R_f = 0.38; IR (film): $\bar{\nu}$ = 1725 (C=O), 1304 (NO) cm⁻¹; MS (EI): m/z (%) = 207 (M^{+•}, 100), 191 (44), 162 (89), 146 (51), 118 (85), 91 (63); ¹H NMR (400 MHz): δ = 8.59 and 8.33 (2d, each *J* = 2.1 Hz, 2-H and 6-H), 6.81 (dd, *J* = 17.4, 11.0 Hz, ar-CH=), 5.70 and 5.58 (2d, *J* = 17.4 and 11.0 Hz, CH₂=), 4.39 (q, *J* = 7.1 Hz, OCH₂), 2.52 (s, ar-CH₃), 1.40 (t, *J* = 7.1 Hz, OC-CH₃) ppm; ¹³C NMR (100 MHz): δ = 163.87, 138.96, 138.27, 137.94, 136.64, 130.08, 129.48, 121.24, 62.14, 15.64, 14.12 ppm.

General Procedure for the Synthesis of 4-Chloromethylnicotinic Acid Esters **9b**- and **9c**-HCl

A solution of the *N*-oxide **15** and *p*-toluenesulfonyl chloride in dry dioxane was heated under reflux for 1.5 h. After cooling to ambient temperature the black mixture was diluted with 10% HCl, stirred for 15 min, and then washed with $5 \times 20 \text{ cm}^3$ of Et_2O . After adding 30 cm^3 of ice-cold Et_2O the aqueous phase was cautiously neutralized with solid NaHCO₃. The unstable base was rapidly extracted with $3 \times 20 \text{ cm}^3$ of ice-cold Et_2O . The combined extracts were dried (Na₂SO₄), stored in the refrigerator, and filtered. Thereafter a weak stream of dry HCl was passed into the filtrate under ice cooling until the precipitation of the reddish brown oil was complete (*ca.* 30–45 min). After evaporating the solvent *in vacuo* the residual product was immediately used in the next step.

4-Chloromethyl-3-ethoxycarbonyl-5-ethylpyridinium Hydrochloride (**9b**, C₁₁H₁₅Cl₂NO₂)

From 9.8 g **15b** (47 mmol), 18.3 g *p*-toluenesulfonyl chloride (94 mmol), 50 cm³ dioxane, 50 cm³ 10% HCl. The crude oil was crystallized from 200 cm³ of *EtOAc*, the crystals were washed with a small volume of the same solvent, and dried at ambient temperature *in vacuo*. Yield: 9.8 g (79%) pink solid; mp 45°C; TLC (CHCl₃:*Me*OH:25% NH₃ = 90:10:1): $R_f = 0.78$; IR (KBr): $\bar{\nu} = 1733$ (C=O) cm⁻¹; MS (EI): m/z (%) = 229 (M^{+•} – H, 11), 227 (M^{+•} – H, 37), 192 (23), 182 (42), 162 (100), 118 (99); ¹H NMR (CD₃OD, 400 MHz): $\delta = 9.18$ and 8.96 (2s, 2-H and 6-H), 4.92 (s, CH₂Cl), 4.52 (q, *J* = 7.1 Hz, OCH₂), 3.09 (q, *J* = 7.6 Hz, ar-CH₂), 1.46 (t, *J* = 7.1 Hz, OC-CH₃), 1.41 (t, *J* = C-CH₃) ppm; ¹³C NMR (CD₃OD, 100 MHz): $\delta = 163.67$, 156.25, 145.47, 145.44, 143.21, 130.68, 64.31, 37.29, 24.09, 14.52, 14.28 ppm.

4-Chloromethyl-3-ethoxycarbonyl-5-vinylpyridinium Hydrochloride (**9c**, C₁₁H₁₃Cl₂NO₂)

From 4.0 g **15c** (19 mmol), 7.4 g *p*-toluenesulfonyl chloride (39 mmol), 30 cm³ dioxane, 30 cm³ 10% HCl. The crude product was used for the next step without further purification. An analytical sample was obtained by FC (CHCl₃:*Me*OH:25% NH₃ = 90:10:1). Yield: 3.5 g (71%) pink oil; TLC (eluent see FC): R_f =0.74; IR (film): $\bar{\nu}$ =1730 (C=O) cm⁻¹; MS (CI): m/z (%) = 228 (M^{+•} + 1, 42), 226 (M^{+•} + 1, 100), 190 (24), 162 (14); ¹H NMR (400 MHz): δ = 9.04 and 8.82 (2s, 2-H and 6-H); 7.06 (dd, *J*=17.5, 11.2 Hz, ar-CH=), 5.82 and 5.62 (2d, *J*=17.5 and 11.2 Hz, CH₂=), 5.02 (s, CH₂Cl), 4.45 (q, *J*=7.1 Hz, OCH₂), 1.44 (t, *J*=7.1 Hz, C–CH₃) ppm; ¹³C NMR (100 MHz): δ =165.50, 151.26, 150.87, 142.95, 134.04, 130.28, 124.95, 121.04, 61.89, 37.73, 14.17 ppm.

Preparation according to Ref. [1], Meth. B, using **7a** and the following workup, The combined dry EtOAc extracts were evaporated *in vacuo* and the residue was crystallized from EtOH. The product was collected by filtration, washed with a small volume of ice-cold EtOH and dried at 60°C *in vacuo*. If the crystallization fails to occur and/or the mother liquor affords no more product, the solvent was removed *in vacuo* and the residue was purified by FC (*n*-hexane:EtOAc = 3:1).

From 8.0 g **7a** (30 mmol)/100 cm³ dry *DMF*, 1.2 g 60% NaH (30 mmol), 7.5 g **8** (31 mmol)/10 cm³ *DMF*, reaction time 1 h. Yield: 11.7 g (92%); mp 148°C (*Et*OH); TLC (*n*-hexane:*EtOAc* = 3:1): R_f =0.62; IR (KBr): $\bar{\nu}$ =2234 (C≡N), 1716 (CO₂R), 1651 (CONR₂) cm⁻¹; MS (CI): *m/z* (%) = 425 (M^{+•} + 1, 27), 263 (100), 236 (44); ¹H NMR (500 MHz): δ = 7.67–7.63 and 7.54–7.50 (2m, 1 + 2 arom H), 7.49–7.44 (m, 5 arom H), 7.32 (ddd, *J* = 8.0, 6.7, 2.0 Hz, 1 arom H), 7.25 (dt, *J* = 7.6, 1.6 Hz, 6-H), 7.20 (dd, *J* = 7.6, 1.6 Hz, 8-H), 7.19–7.15 (m, 7-H), 7.06 (dd, *J* = 7.6, 0.5 Hz, 5-H), 4.65 and 4.35 (2d, each *J* = 13.4 Hz, each 1H, ar-CH₂), 4.00–3.85 (m, OCH₂), 3.68 and 3.35 (2ddd, *J* = 12.9, 5.0, 4.1 and 12.9, 10.4, 3.3 Hz, 3-H_{ab}), 2.64 (ddd, *J* = 15.7, 5.0, 3.3 Hz, 4-H_a), 2.33 (m, 4-H_b), 1.23 (t, *J* = 7.1 Hz, OC–CH₃) ppm; ¹³C NMR (125 MHz): δ = 171.69, 166.95, 136.03, 135.27, 134.72, 133.54, 132.14, 131.90, 131.29, 130.39, 130.23, 128.67 (2C), 128.49, 128.27, 127.97, 127.53, 127.05 (2C), 126.81, 119.28, 60.73, 60.03, 45.88, 40.06, 29.12, 13.92 ppm.

General Procedure for the Synthesis of 1-Substituted 3,4-Dihydroisoquinoline-Reissert-Compounds 11

To a solution of **7** in dry *DMF* K-*t*-OC₄H₉ was added at -56° C under N₂ and vigorous stirring. After stirring for additional 2 min a solution of **9** in *DMF* was added dropwise as slowly as the colour of the suspension disappeared at no time (*ca.* 15 min). Stirring was continued at -56° C for 30 min and thereafter for 15 min at ambient temperature. The suspension was cautiously poured into a mixture of 200 cm³ of *EtOAc* and 800 cm³ of H₂O and extracted with 4×200 cm³ of *EtOAc*. The combined organic phases were dried (Na₂SO₄), filtered, and evaporated *in vacuo*. The yellowish, semi-solid residue was purified by FC (*n*-hexane:*EtOAc* = 1:1) followed by recrystallization from *MeOH*.

4-(2-Benzoyl-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-ylmethyl)nicotinic Acid Ethyl Ester (**11a**, C₂₈H₂₇N₃O₅)

From 3.0 g **7b** (9.3 mmol), 300 cm³ dry *DMF*, 2.1 g K-*t*-OC₄H₉ (18.6 mmol), 1.9 g **9a** (9.4 mmol)/10 cm³ *DMF*. Yield: 3.6 g (79%) colourless crystals; mp 160°C; TLC (*n*-hexane:*EtOAc* = 1:1): R_f = 0.45; IR (KBr): $\bar{\nu}$ = 2228 (C \equiv N), 1721 (CO₂R), 1645 (CONR₂) cm⁻¹; MS (CI): *m/z* (%) = 486 (M^{+•} + 1, 100), 321 (72); ¹H NMR (400 MHz): δ = 8.83 (s, 1 arom H), 8.64 (d, *J* = 5.0 Hz, 1 arom H), 7.53–7.40 (m, 6 arom H), 6.51 and 6.50 (2s, 5-H and 8-H), 4.52 and 4.32 (2d, each *J* = 12.6 Hz, ar-CH₂), 3.99–3.90 (m, OCH₂), 3.83 and 3.63 (2s, 2OCH₃), 3.72 and 3.36 (2ddd, *J* = 13.0, 4.9, 4.2 and 13.0, 10.1, 3.3 Hz, 3-H_a and 3-H_b), 2.58 (ddd, *J* = 15.8, 4.9, 3.3 Hz, 4-H_a), 2.38 (m, 4-H_b), 1.21 (t, *J* = 7.1 Hz, CH₃) ppm; ¹³C NMR (100 MHz): δ = 172.03, 165.21, 151.65, 150.77, 149.13, 147.54, 144.41, 135.61, 130.75, 128.80 (2C), 128.04, 127.81, 127.59, 127.16 (2C), 122.78, 118.78, 111.14, 110.57, 61.26, 59.19, 55.93, 55.77, 45.90, 39.22, 28.80, 13.82 ppm.

4-(2-Benzoyl-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-ylmethyl)-5ethylnicotinic Acid Ethyl Ester (**11b**, C₃₀H₃₁N₃O₅)

From 1.0 g **7b** (3.1 mmol), 100 cm³ dry *DMF*, 0.7 g K-*t*-OC₄H₉ (6.2 mmol), 0.7 g **9b** (2.7 mmol)/5 cm³ *DMF*. Yield: 1.2 g (73%) colourless crystals; mp 164°C; TLC (*n*-hexane:*Et*OA*c* = 1:1): $R_{\rm f}$ = 0.29; IR (KBr): $\bar{\nu}$ = 2232 (C \equiv N), 1703 (CO₂R), 1652 (CONR₂) cm⁻¹; MS (CI): m/z (%) = 542 (M^{+•} + 29, 4),

514 (M^{+•} + 1, 100), 321 (100); ¹H NMR (-20° C, 400 MHz): $\delta = 8.74$ and 8.71 (2s, each 1 arom H), 7.63–7.47 (m, 5 arom H), 6.67 and 6.00 (2s, 5-H and 8-H), 4.53 and 4.44 (2d, each J = 12.5 Hz, ar-CH₂), 4.03–3.81 and 3.90 (br m and s, OCH₂ and OCH₃), 3.67–3.54 (m, 3-H_{ab}), 3.45 (s, OCH₃), 3.23–3.09 and 3.04–2.84 (2m, C–CH₂ and 4-H_{ab}), 1.33 and 1.24 (2 br t, each J = 7.3 Hz, OC–CH₃ and CH₃) ppm; ¹³C NMR (100 MHz): $\delta = 172.15$, 165.97, 153.97, 149.24, 148.37, 147.07, 142.17, 141.68, 135.80, 130.79, 128.88 (2C), 128.64, 127.44, 127.20 (2C), 122.57, 118.70, 111.84, 110.58, 61.07, 59.22, 55.63, 45.87, 33.41, 29.02, 24.20, 16.18, 13.75 ppm.

4-(2-Benzoyl-7-benzyloxy-1-cyano-6-methoxy-1,2,3,4-tetrahydroisoquinolin-1ylmethyl)-5-ethylnicotinic Acid Ethyl Ester (**11c**, C₃₆H₃₅N₃O₅)

From 3.0 g **7c** (7.5 mmol), 300 cm³ dry *DMF*, 1.7 g K-*t*-OC₄H₉ (15.0 mmol), 1.6 g **9b** (7.5 mmol)/10 cm³ *DMF*. Yield: 3.1 g (70%) colourless crystals; mp 164°C; TLC (*n*-hexane:*EtOAc* = 1:2): R_f = 0.57; IR (KBr): $\bar{\nu}$ = 2225 (C \equiv N), 1715 (CO₂R), 1640 (CONR₂) cm⁻¹; MS (CI): m/z (%) = 590 (M^{+•} + 1, 26), 397 (28), 74 (100); ¹H NMR (-20°C, 400 MHz): δ = 8.76 and 8.73 (2s, each 1 arom H), 7.63–7.45 and 7.44–7.29 (2m, each 5 arom H), 6.68 and 6.12 (2s, 8-H and 5-H), 4.60 (s, ar-OCH₂-ar), 4.49 and 4.43 (2d, each *J* = 12.8 Hz, ar-CH₂), 4.03–3.79 and 3.88 (br m and s, OCH₂ and OCH₃), 3.71–3.50 (m, 3-H_{ab}), 3.20–2.77 (m, C–CH₂ and 4-H_{ab}), 1.33 (t, *J* = 7.1 Hz, OC–CH₃), 1.28 (t, *J* = 7.4 Hz, CH₃) ppm; ¹³C NMR (100 MHz): δ = 172.19, 166.18, 154.30, 149.29, 148.28, 146.11, 142.40, 141.37, 136.07, 135.61, 130.90, 128.95 (2C), 128.75 (2C), 128.55, 128.29, 127.94 (2C), 127.71, 127.28 (2C), 122.07, 118.40, 113.14, 110.49, 70.58, 61.28, 59.18, 55.95, 46.19, 33.69, 29.02, 24.25, 16.55, 13.75 ppm.

4-(2-Benzoyl-7-benzyloxy-1-cyano-6-methoxy-1,2,3,4-tetrahydroisoquinolin-1ylmethyl)-5-vinylnicotinic Acid Ethyl Ester (**11d**, C₃₆H₃₃N₃O₅)

From 1.5 g **7c** (3.8 mmol), 300 cm³ dry *DMF*, 842 mg K-*t*-OC₄H₉ (7.5 mmol), 1.0 g **9c** (3.8 mmol)/10 cm³ *DMF*. Yield: 1.3 g (61%) colourless crystals; mp 174°C; TLC (*n*-hexane:*EtOAc* = 1:1): R_f =0.39; IR (KBr): $\bar{\nu}$ = 2219 (C=N), 1717 (CO₂R), 1639 (CONR₂) cm⁻¹; MS (CI): m/z (%) = 588 (M^{+•} + 1, 21), 397 (26), 192 (100); ¹H NMR (-20°C, 400 MHz): δ = 9.04 and 8.77 (2s, each 1 arom H), 8.03 (dd, J = 17.3, 11.0 Hz, 1 arom H), 7.59–7.48 and 7.42–7.32 (2m, each 5 arom H), 6.69 and 6.31 (2s, 8-H and 5-H), 5.91 and 5.74 (2d, J = 17.3 and 11.0 Hz, CH₂=), 4.71–4.62 (m, ar-CH₂O-ar), 4.52 and 4.47 (2d, each J = 12.9 Hz, ar-CH₂), 4.05–3.95 (m, 3-H_a), 3.94–3.80 (m and s, OCH₂ and OCH₃), 3.74–3.63 (m, 3-H_b), 3.60–3.49 and 3.00–2.80 (2m, 4-H_{ab}), 1.29 (t, J = 7.2 Hz, CH₃) ppm; ¹³C NMR (100 MHz): δ = 171.92, 165.66, 150.55, 149.08 (2C), 146.01, 140.39, 136.08, 135.79, 135.26, 131.99, 130.67, 128.68 (2C), 128.53 (3C), 128.08, 127.69 (2C), 121.94, 120.13, 118.03, 112.72, 110.31, 70.36, 61.20, 58.65, 55.73, 45.94, 33.81, 28.73, 13.53 ppm.

4-(2-Benzoyl-1-cyano-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1ylmethyl)nicotinic Acid (16, C₂₆H₂₃N₃O₅)

To a solution of 101 mg of **11a** (0.2 mmol) in 10 cm³ of hot *Et*OH a solution of 42 mg KOH (0.6 mmol) in 0.5 cm³ of H₂O was added. The mixture was refluxed for 2 h and then adjusted to pH = 6-7 with 2N HCl under ice-cooling. The colorless solid was filtered off, washed with 2×5 cm³ of H₂O, and dried *in vacuo*. Yield: 87 mg (96%); mp 177°C; TLC (CHCl₃:*Me*OH = 9:1): $R_f = 0.24$; IR (KBr): $\bar{\nu} = 3300-2800$ (OH), 2218 (w, C=N), 1711 (CO₂H), 1638 (CONR₂) cm⁻¹; MS (EI): m/z (%) = 412 (M⁺• - CO₂, 100), 397 (73), 105 (50), 77 (43); ¹H NMR (CD₃OD, 400 MHz): $\delta = 8.81$ (s, 2-H), 8.51 (d, J = 5.1 Hz, 6-H), 7.42 (m, 5 arom H), 7.31 (d, J = 4.5 Hz, 1 arom H), 6.55 and 6.51 (2s, each 1 arom H), 4.52 and 4.27 (2d, each J = 12.6 Hz, ar-CH₂), 3.79 (s, OCH₃), 3.62 (m, OCH₃ + 1H), 3.35

204

(ddd, J = 13.5, 9.8, 3.5 Hz, 1H), 2.57 and 2.37 (2ddd, J = 15.7, 4.9, 3.5 and 13.5, 9.8, 3.8 Hz, each 1H) ppm; ¹³C NMR (CD₃OD, 100 MHz): $\delta = 173.95$, 168.95, 151.98, 151.61, 151.13, 149.10, 146.69, 137.02, 131.77, 130.01, 129.92 (2C), 129.63, 129.27, 127.97 (2C), 123.94, 120.01, 112.71, 112.57, 60.57, 56.49, 56.38, 47.01, 40.63, 29.32 ppm.

4-(2-Benzoyl-6,7-dimethoxy-3,4-dihydro-2H-isoquinolin-1-ylidenemethyl)nicotinic Acid (17, C₂₅H₂₂N₂O₅)

A mixture of 70 mg of **11a** (0.14 mmol), 23 mg of powdered KOH (0.4 mmol), and 10 cm³ of monoethyleneglycol was refluxed for 3 h. The cold solution was diluted with 20 cm³ of H₂O, and adjusted to pH = 6-7 with 2N HCl under ice-cooling. The solid was filtered off and after drying recrystallized from 10 cm³ of *Et*OH. The colourless crystals were washed with a small volume of *Et*OH and dried *in vacuo*. Yield: 32 mg (62%); mp 199°C; TLC (CHCl₃:*Me*OH = 1:1): $R_f = 0.15$; ¹H NMR (400 MHz): $\delta = 9.16$ (s, 2-H), 8.71 (br s, 6-H), 7.74 (s, ar-CH=), 7.72 (d, J = 5.1 Hz, 5-H), 7.64–7.62 (m, 2 arom H), 7.36 (t, J = 7.3 Hz, 1 arom H), 7.28 (t, J = 7.6 Hz, 2 arom H), 6.83 and 6.80 (2s, each 1 arom H), 3.79 and 3.76 (2s, 2OCH₃), 3.57 and 3.01 (2t, each J = 7.8 Hz, each 2H) ppm.

2-Benzoyl-1-(3-ethoxycarbonylpyridin-4-ylmethyl)-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline-1-carboxylic Acid (**18**, C₂₈H₂₈N₂O₇)

A solution of 70 mg of **11a** (0.14 mmol) in 5 cm³ of 20% H₂SO₄ was refluxed for 3 h and then adjusted to pH = 7 with NH₄OH under ice-cooling. The precipitated colourless solid was filtered off, washed with 2×5 cm³ of H₂O, and dried *in vacuo*. Yield: 40 mg (56%); mp 232°C; TLC (CHCl₃:*Me*OH = 9:1): $R_{\rm f} = 0.22$; IR (KBr): $\bar{\nu} = 3300-2800$ (OH), 1722 (CO₂R and CO₂H), 1636 (CONR₂) cm⁻¹; MS (CI): m/z (%) = 533 (M^{+•} + 29, 7), 505 (M^{+•} + 1, 52), 487 (M^{+•} - OH, 57), 459 (M^{+•} - CO₂, 54), 296 (84), 105 (100); ¹H NMR (CD₃OD, 400 MHz): $\delta = 8.61$ (s, heteroarom 2-H), 8.48 (d, J = 5.1 Hz, heteroarom 6-H), 7.51–7.47 (m, 5 arom H), 7.21 (d, J = 5.1 Hz, heteroarom 5-H), 7.12 and 6.58 (2s, 5-H and 8-H), 4.51 and 4.43 (2d, each J = 13.3 Hz, aryl–CH₂), 4.04 (dq, J = 10.7, 7.1 Hz, OCH₂), 3.87 and 3.81 (2s, 2OCH₃), 3.40 and 2.89 (2ddd, J = 11.3, 8.0, 3.6 and 12.8, 7.2, 3.7 Hz, 3-H_{ab}), 2.52 and 1.77 (2ddd, J = 11.3, 7.2, 3.6 and 12.8, 8.0, 3.6 Hz, 4-H_{ab}), 1.23 (t, J = 7.1 Hz, CH₃) ppm.

General Procedure for the Preparation of 1,2,3,4-Tetrahydroisoquinoline-1carboxylic Acids 19 and 20

85% H_3PO_4 was heated to 100°C (bath temperature) under stirring and then **10** or **11a** were added. Stirring was continued for additional 15 min causing sublimation of benzoic acid. The mixture was diluted with 10 cm³ of ice/H₂O under ice-cooling and adjusted to pH=7 with NH₄OH. Cooling was continued for 2–4 h causing a nearly colourless gelatinous precipitate, which was filtered off and dried *in vacuo*.

1-(2-Ethoxycarbonylbenzyl)-1,2,3,4-tetrahydroisoquinoline-1-carboxylic Acid (19, C₂₀H₂₁NO₄)

From 3.0 g **10** (7.1 mmol), 20 cm³ H₃PO₄. Yield: 1.8 g (76%) colourless solid; mp 191°C; TLC (RP8, *Me*OH:H₂O = 1:1): $R_{\rm f}$ = 0.54; IR (KBr): $\bar{\nu}$ = 3411 (NH), 3000–2600 (OH), 1714 (CO₂R), 1676 (CO₂H) cm⁻¹; MS (CI): *m/z* (%) = 340 (M^{+•} + 1, 75), 322 (12), 294 (48), 248 (100); ¹H NMR (CD₃OD:F₃CCO₂D = 5:1, 400 MHz): δ = 7.97 (dd, *J* = 7.9, 1.4 Hz, 1 arom H), 7.95–7.90 (m, 1 arom H), 7.61 and 7.53 (2dt, *J* = 7.6, 1.5 and 7.7, 1.1 Hz, each 1 arom H), 7.48 (dd, *J* = 7.7, 1.0 Hz, 1 arom H), 7.44–7.38 (m, 2 arom H), 7.34–7.28 (m, 1 arom H), 4.49–4.35 (m, OCH₂), 4.32 and 3.70 (2d, each *J* = 14.4 Hz, aryl–CH₂), 3.53–3.46 (m, 3-H_{ab}), 3.28–3.16 (m, 4-H_a), 3.10 (dt, *J* = 17.3, 4.2 Hz, 4-H_b), 1.41 (t, *J* = 7.2 Hz, CH₃) ppm; ¹³C NMR (CD₃OD:F₃CCO₂D = 5:1, 100 MHz): δ = 172.28, 171.57,

134.99, 134.36, 133.57, 133.49, 132.94, 132.50, 131.68, 130.49, 130.24, 129.99, 129.44, 128.86, 68.00, 63.94, 43.08, 41.45, 26.56, 14.10 ppm.

1-(3-Ethoxycarbonylpyridin-4-ylmethyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic Acid (**20**, C₂₁H₂₄N₂O₆)

From 1.5 g **11a** (3.1 mmol), 10 cm³ H₃PO₄. Yield: 844 mg (68%) yellowish solid; mp 167–170°C; TLC (RP8, *Me*OH:H₂O = 1:1): $R_{\rm f}$ = 0.61; IR (KBr): $\bar{\nu}$ = 3421 (NH), 3000–2600 (OH), 1719 (CO₂R) cm⁻¹; MS (CI): m/z (%) = 309 (M^{+•} – OH, –CO, –OEt, 100), 236 (M^{+•} – C₇H₇, 79), 192 (65); ¹H NMR (F₃CCO₂D, 400 MHz): δ = 9.45 (s, heteroarom 2-H), 9.00 and 8.21 (2d, each *J* = 6.2 Hz, heteroarom 6-H and 5-H), 7.50 and 6.92 (2s, arom 8-H and 5-H), 4.68 (q, *J* = 7.2 Hz, OCH₂), 4.57 and 4.35 (2d, each *J* = 14.2 Hz, aryl–CH₂), 4.04 and 4.02 (2s, 2OCH₃), 3.86–3.74 and 3.61–3.51 (2m, 3-H_{ab}), 3.25–3.15 (m, 4-H_{ab}), 1.54 (t, *J* = 7.2 Hz, CH₃) ppm; ¹³C NMR (F₃CCO₂D, 100 MHz): δ = 172.51, 167.95, 157.91, 152.90, 151.00, 146.46, 146.06, 134.47, 134.27, 128.76, 120.63, 114.51, 112.61, 69.17, 68.99, 58.23, 57.59, 44.03, 43.73, 26.96, 14.49 ppm.

8-Oxo-5,6,8,13-tetrahydrodibenzo[a,g]quinolizine-13a-carboxylic Acid (8-oxoberbine-13a-carboxylic Acid, **21**)

From **19**: To a solution of 4.0 g of KOH (71 mmol) in 40 cm³ of 50% *Et*OH 1.7 g of **19** (5.0 mmol) were added and the mixture was refluxed for 2 h. After removing the *Et*OH *in vacuo*, the solution was acidified with conc. HCl under ice-cooling. The colourless solid was filtered off, dried *in vacuo* at ambient temperature, and crystallized from *EtOAc*. Additional product could be obtained by concentrating the mother liquor. Yield: 1.4 g (96%); the analytical data are completely in line with those given in Ref. [2].

General One-Pot Procedure for the Preparation of Oxocarboxylic Acids 21 and 22 from 10 and 11

The educts **10** and **11** were added to 10 cm^3 of hot $85\% \text{ H}_3\text{PO}_4$ (100°C bath temperature) under stirring. Heating and stirring was continued for 15 min causing sublimation of benzoic acid. The mixture was placed into an ice bath, diluted with 10 cm^3 of ice/H₂O, and stirred for additional 15 min. After rendering alkaline with 6*N* NaOH the mixture was heated to 80°C (bath temperature) under N₂ for 15 min. In the case of **21** conc. HCl was added under ice-cooling until a colourless precipitation occurred. Further workup was the same as already given (see above **21**). In the case of **22** the cold alkaline solution was justified to pH = 6-7 with 2N HCl and extracted with $10-12 \times 30 \text{ cm}^3$ of EtOAc until no more product was detected in the aqueous phase (TLC monitoring). The combined organic extracts were dried (Na₂SO₄), filtered, and evaporated *in vacuo*. The residue was crystallized from the solvent indicated. The acids thus obtained were poorly soluble in Et_2O , CHCl₃, MeOH, acetone, DMSO, DMF, and H_2O). Chromatographical purification could be achieved only by PLC (CHCl₃:MeOH = 4:1), but this method was found to cause marked loss of the product.

8-Oxo-5,6,8,13-tetrahydrodibenzo[a,g]quinolizine-13a-carboxylic Acid (8-oxoberbine-13a-carboxylic Acid, **21**)

From 1.0 g **10** (2.4 mmol). Yield: 670 mg (87%); analytical data are in line with those already given (see above).

$\label{eq:2,3-Dimethoxy-8-oxo-5,6,13,13a-tetrahydro-8H-isoquino[2,1-b][2,7]naphthyridin-13a-carboxylic Acid ({\bf 22a}, C_{19}H_{18}N_2O_5)$

From 1.1 g **11a** (2.1 mmol). The residue was crystallized from *Me*OH (4 days). Yield: 476 mg (64%) beige crystals; mp 211°C; TLC (CHCl₃:*Me*OH=4:1): R_f =0.16; IR (KBr): $\bar{\nu}$ =3000–2600 (OH),

1716 (CO₂H), 1661 (CONR₂) cm⁻¹; MS (CI): m/z (%) = 355 (M^{+•} + 1, 3), 310 (100), 309 (61); ¹H NMR (CD₃OD, 400 MHz): δ = 9.00 (s, 9-H), 8.53 (d, J = 5.2 Hz, 11-H), 7.51 (s, 1-H), 7.40 (d, J = 5.2 Hz, 12-H), 6.75 (s, 4-H), 4.81 (m, 6-H_a, superimposed by H₂O), 3.99 (d, J = 16.0 Hz, 13-H_a), 3.87 and 3.83 (2s, 2OCH₃), 3.55 (ddd, J = 12.9, 10.6, 5.3 Hz, 6-H_b), 3.02 (d, J = 16.1 Hz, 13-H_b), 2.95–1.81 (m, 5-H_{ab}) ppm; ¹³C NMR (CD₃OD, 100 MHz): δ = 178.54, 164.91, 152.11, 149.41, 149.26, 149.03, 148.94, 129.94, 128.25, 126.55, 123.85, 112.33, 111.32, 67.64, 56.60, 56.38, 42.25, 39.20, 29.38 ppm.

12-Ethyl-2-hydroxy-3-methoxy-8-oxo-5,6,13,13a-tetrahydro-8Hisoquino[2,1-b][2,7]naphthyridin-13a-carboxylic Acid (**22b**, C₂₀H₂₀N₂O₅)

From 1.1 g **11c** (1.7 mmol). The residue was crystallized from $MeOH:H_2O = 9:1$ (14 days). Yield: 384 mg (61%) beige crystals; mp 221°C; TLC (CHCl₃:MeOH = 4:1): $R_f = 0.20$; IR (KBr): $\bar{\nu} = 3000-2600$ (OH), 1709 (w, CO₂H), 1657 (CONR₂) cm⁻¹; MS (CI): m/z (%) = 397 (M^{+•} + 29, 9), 369 (M^{+•} + 1, 12), 325 (45), 324 (26), 323 (100); ¹H NMR F₃CCO₂D, 400 MHz): $\delta = 9.46$, 8.79, 7.45, and 6.95 (4s, 9-H, 11-H, 1-H, and 4-H), 5.12–5.03 (m, 6-H_a), 4.56 (d, J = 17.6 Hz, 13-H_a), 4.06 (s, OCH₃), 3.84–3.74 (m, 6-H_b), 3.49 (d, J = 17.6 Hz, 13-H_b), 3.29–3.01 (m, 5-H_{ab} and CH₂), 1.54 (t, J = 7.5 Hz, CH₃) ppm; ¹³C NMR (F₃CCO₂D, 100 MHz): $\delta = 177.19$, 163–164, 158.43, 149.96, 145.75, 145.56, 143.78, 141.94, 130.14, 129.74, 124.62, 115.34, 115.08, 66.30, 57.49, 41.69, 39.24, 29.28, 25.06, 13.57 ppm.

2-Hydroxy-3-methoxy-8-oxo-12-vinyl-5,6,13,13a-tetrahydro-8Hisoquino[2,1-b][2,7]naphthyridin-13a-carboxylic Acid (**22c**, C₂₀H₁₈N₂O₅)

From 1.1 g **11d** (1.7 mmol). The residue was crystallized from MeOH (*ca.* 14 days). Yield: 398 mg (64%) pale yellow crystals; mp 212°C; TLC (CHCl₃:MeOH = 4:1): $R_f = 0.21$; IR (CHCl₃/film): $\bar{\nu} = 3418$ (aryl–OH), 3300–2700 (OH), 1726 (CO₂H), 1645 (CONR₂) cm⁻¹; MS: (FAB): m/z (%) = 367 (M⁺• + 1, 23); (EI): m/z (%) = 322 (M⁺• – CO₂, 93), 307 (100), 305 (49), 293 (89), 176 (20); ¹H NMR (500 MHz; CD₃OD): $\delta = 8.93$, 8.67, and 7.32 (3s, 9-H, 11-H, 1-H), 7.02 (dd, J = 11.3, 11.4 Hz, vinyl–CH=), 6.75 (s, 4-H), 5.84 and 5.59 (2d, J = 17.3 and 11.3 Hz, vinyl–CH₂=), 4.82–4.76 (m, 6-H_a), 4.16 and 2.91 (2d, each J = 16.5 Hz, 13H_{ab}), 3.86 (s, OCH₃), 3.52–3.47 (m, 6-H_b), 2.88–2.82 (m, 5-H_{ab}) ppm; ¹³C NMR (100 MHz; CD₃OD): $\delta = 177.70$, 165.20, 150.34, 148.63, 148.56, 146.40, 145.51, 133.22, 131.42, 128.88, 127.17, 126.03, 120.46, 114.33, 112.45, 66.45, 56.40, 39.75, 38.95, 29.35 ppm.

General Procedure for the Decarboxylation of Compounds 21 and 22 According to Ref. [1]

The crude products were purified by FC or PLC.

5,6,13,13a-Tetrahydro-8H-dibenzo[a,g]quinolizin-8-one (Berbin-8-one, **25**) and 5,6-Dihydro-8H-dibenzo[a,g]quinolizin-8-one (**23**)

For preparation and analytical data see Ref. [1].

2,3-Dimethoxy-5,6-dihydro-8H-isoquino[2,1-b][2,7]naphthyridin-8-one (24a)

From 410 mg **22a** (1.2 mmol), reaction time 15 min, FC (CHCl₃:*Me*OH = 9:1). Yield: 228 mg (64%) yellow crystals; mp 161–165°C (*Me*OH, Ref. [26]: mp 169–170°C); TLC (eluent see FC): $R_{\rm f} = 0.48$ (blue fluorescence, $\lambda_{\rm em} = 365$ nm); IR (KBr): $\bar{\nu} = 1651$ (CONR₂) cm⁻¹; UV ($c = 3.243 \times 10^{-5}$ mol dm⁻³, 0.1 *N* HCl in *Et*OH): $\lambda_{\rm max}$ ($\varepsilon \times 10^{-3}$) = 252 (23.34), 373 (26.46), 418

(33.33) nm (mol⁻¹ dm³ cm); MS (EI): m/z (%) = 308 (M^{+•}, 87), 293 (100); ¹H NMR: Data were in line with those published in Ref. [26]; ¹³C NMR (100 MHz): δ = 161.45, 151.65, 150.29, 148.72, 148.67, 143.53, 142.72, 129.87, 121.10, 119.37, 119.19, 110.50, 108.31, 98.95, 56.32, 56.15, 39.60, 27.76 ppm.

12-Ethyl-2-hydroxy-3-methoxy-5,6-dihydro-8H-isoquino[2,1-b][2,7]naphthyridin-8-one (Dihydroalangimarine, **24b**)

From 156 mg **22b** (0.4 mmol), reaction time 10 min, PLC (CHCl₃:*Me*OH = 9:1). Yield: 80 mg (61%) yellow crystals; mp 208–212°C (*Me*OH, Ref. [27]: mp 222°C); TLC (eluent see FC): $R_f = 0.33$ (blue fluorescence, $\lambda_{em} = 365$ nm); IR (KBr): $\bar{\nu} = 3421$ (OH), 1657 (CONR₂) cm⁻¹; UV ($c = 3.7224 \times 10^{-5}$ mol dm⁻³, 0.1 *N* HCl in *Et*OH): λ_{max} ($\varepsilon \times 10^{-3}$) = 224 (32.24), 266 (18.91), 420 (34.92) nm (mol⁻¹ dm³ cm); MS (EI): m/z (%) = 322 (M^{+•}, 66), 307 (100), 292 (12); ¹H NMR: Data were in line with those published in Ref. [27]; ¹³C NMR (100 MHz): $\delta = 161.73$, 149.03, 148.12, 147.05, 146.92, 145.30, 143.05, 141.46, 129.01, 122.13, 119.14, 111.64, 109.96, 96.01, 56.20, 39.68, 27.83, 23.04, 14.62 ppm.

2-Hydroxy-3-methoxy-12-vinyl-5,6-dihydro-8H-isoquino[2,1-b][2,7]naphthyridin-8one (Alangimarine, **24c**)

From 333 mg **22c** (0.9 mmol), reaction time 15 min, FC (CHCl₃:*Me*OH = 9:1). Yield: 177 mg (61%) yellow crystals; mp 242–244°C (*Me*OH, Ref. [28]: mp 245–247°C); TLC (eluent see FC): $R_f = 0.34$ (blue fluorescent, $\lambda_{em} = 365$ nm); IR (KBr): $\bar{\nu} = 3508$ (OH), 1655 (CONR₂) cm⁻¹; UV ($c = 2.4973 \times 10^{-5}$ mol dm⁻³, *Et*OH): λ_{max} ($\varepsilon \times 10^{-3}$) = 261 (19.77), 290 (10.69), 365 (25.26), 380 (21.96) nm (mol⁻¹ dm³ cm); MS (EI): m/z (%) = 320 (M^{+•}, 78), 305 (100), 290 (10); ¹H NMR: Data were in line with those published in Ref. [28]; ¹³C NMR (125 MHz): $\delta = 160.85$, 149.68 (2C), 148.09, 146.95, 144.27, 138.53, 129.50, 128.05, 126.91, 121.45, 118.56, 118.03, 110.59, 108.06, 95.33, 55.25, 38.71, 26.98 ppm.

References

- [1] Part VIII: Reimann E, Grasberger F, Polborn K (2003) Monatsh Chem 134: 991
- [2] Reimann E, Grasberger F, Polborn K (2000) Monatsh Chem 131: 73
- [3] Reimann E, Grasberger F (unpublished)
- [4] Reimann E, Renz H, Dammertz W, Scholz T (1996) Monatsh Chem 127: 173
- [5] Reimann E, Benend H (1994) Arch Pharm (Weinheim) 327: 539
- [6] Jackson YA, Stephenson EK, Cava MP (1993) Heterocycles 36: 1047 and Refs cited herein
- [7] Shamma M, Jones CD (1970) J Org Chem 35: 3119
- [8] Böhme H, Stöcker KP (1972) Chem Ber 105: 1578
- [9] Shen R, Smith RV, Davis PJ, Brubaker A, Abell CW (1982) J Biol Chem 257: 7294
- [10] Lasala JM, Coscia CJ (1979) Science 203: 283
- [11] Galloway MP, Roth BL, Coscia CJ (1981) Arch Biochem Biophys 209: 620
- [12] Lange NA, Hambourger WE (1931) J Am Chem Soc 53: 3865
- [13] Whaley WM, Meadow M (1953) J Chem Soc 1067
- [14] Reimann E, Benend H (1992) Monatsh Chem 123: 939
- [15] Clarke K, Goulding J, Scrowston RM (1984) J Chem Soc Perkin Trans 1, 1501
- [16] Bobbit JM, Scola DA (1960) J Org Chem 25: 560
- [17] Meyers AI, Guiles J (1989) Heterocycles 28: 295
- [18] Sharma V, Joshi DP (1984) J Ind Chem Soc 61: 71; CA (1984) 101: 171043z
- [19] Orito K, Hatakeyama T, Takeo M, Uchiito S, Tokuda M, Suginome H (1998) Tetrahedron 54: 8403

- [20] Pelletier JC, Cava MP (1987) J Org Chem 52: 616
- [21] Kametani T, Ohkubo K (1967) Chem Pharm Bull 15: 608
- [22] Bobbit JM, Cheng TY (1976) J Org Chem 41: 443
- [23] Govindachari TR, Nagarajan K, Rajappa S (1957) J Chem Soc 551
- [24] Govindachari TR, Nagarajan K, Rajappa S (1957) J Chem Soc 2725
- [25] Toyoda T, Muraki S, Yoshida T (1978) Agric Biol Chem 42: 1901
- [26] Nagarajan K, Rodrigues PJ, Nethaji M, Vöhler M, von Philipsborn W (1994) Helv Chim Acta 77: 155
- [27] Pakrashi SC, Mukhopadhyay R, Sinha RR, Dastidar PPG, Achari B, Ali E (1985) Ind J Chem 24b: 19
- [28] Jahangir, Brook MA, MacLean DB, Holland HL (1987) Can J Chem 65: 2362